Copied to
clipboard

G = C62.6C23order 288 = 25·32

1st non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.6C23, Dic329C2, (C4×Dic3)⋊8S3, C6.D62C4, Dic3⋊C420S3, C6.1(C4○D12), (C2×C12).184D6, Dic3.9(C4×S3), C32(C422S3), (Dic3×C12)⋊18C2, C6.1(Q83S3), Dic3⋊Dic321C2, C6.29(D42S3), (C6×C12).208C22, (C2×Dic3).108D6, C322(C42⋊C2), C6.D12.5C2, C2.1(D6.6D6), C6.11D12.7C2, C2.1(D6.3D6), (C6×Dic3).50C22, C2.9(C4×S32), C6.7(S3×C2×C4), (C2×C4).37S32, C22.15(C2×S32), C31(C4⋊C47S3), (C3×Dic3⋊C4)⋊1C2, (C3×C6).1(C4○D4), (C3×C6).7(C22×C4), (C2×C6).25(C22×S3), (C3×Dic3).6(C2×C4), (C2×C6.D6).1C2, (C22×C3⋊S3).6C22, (C2×C3⋊Dic3).9C22, (C2×C3⋊S3).16(C2×C4), SmallGroup(288,484)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.6C23
C1C3C32C3×C6C62C6×Dic3Dic32 — C62.6C23
C32C3×C6 — C62.6C23
C1C22C2×C4

Generators and relations for C62.6C23
 G = < a,b,c,d,e | a6=b6=1, c2=e2=b3, d2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece-1=a3c, de=ed >

Subgroups: 634 in 169 conjugacy classes, 58 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C42⋊C2, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, S3×C2×C4, C6.D6, C6×Dic3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C422S3, C4⋊C47S3, Dic32, C6.D12, Dic3⋊Dic3, Dic3×C12, C3×Dic3⋊C4, C6.11D12, C2×C6.D6, C62.6C23
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, C4×S3, C22×S3, C42⋊C2, S32, S3×C2×C4, C4○D12, D42S3, Q83S3, C2×S32, C422S3, C4⋊C47S3, D6.6D6, C4×S32, D6.3D6, C62.6C23

Smallest permutation representation of C62.6C23
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 48 16 10)(2 43 17 11)(3 44 18 12)(4 45 13 7)(5 46 14 8)(6 47 15 9)(19 39 28 34)(20 40 29 35)(21 41 30 36)(22 42 25 31)(23 37 26 32)(24 38 27 33)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 38 45 33)(8 39 46 34)(9 40 47 35)(10 41 48 36)(11 42 43 31)(12 37 44 32)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,48,16,10)(2,43,17,11)(3,44,18,12)(4,45,13,7)(5,46,14,8)(6,47,15,9)(19,39,28,34)(20,40,29,35)(21,41,30,36)(22,42,25,31)(23,37,26,32)(24,38,27,33), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,38,45,33)(8,39,46,34)(9,40,47,35)(10,41,48,36)(11,42,43,31)(12,37,44,32)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,48,16,10)(2,43,17,11)(3,44,18,12)(4,45,13,7)(5,46,14,8)(6,47,15,9)(19,39,28,34)(20,40,29,35)(21,41,30,36)(22,42,25,31)(23,37,26,32)(24,38,27,33), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,38,45,33)(8,39,46,34)(9,40,47,35)(10,41,48,36)(11,42,43,31)(12,37,44,32) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,48,16,10),(2,43,17,11),(3,44,18,12),(4,45,13,7),(5,46,14,8),(6,47,15,9),(19,39,28,34),(20,40,29,35),(21,41,30,36),(22,42,25,31),(23,37,26,32),(24,38,27,33)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,38,45,33),(8,39,46,34),(9,40,47,35),(10,41,48,36),(11,42,43,31),(12,37,44,32)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F4G···4L4M4N6A···6F6G6H6I12A12B12C12D12E···12J12K···12R12S12T12U12V
order1222223334444444···4446···66661212121212···1212···1212121212
size111118182242233336···618182···244422224···46···612121212

54 irreducible representations

dim11111111122222224444444
type+++++++++++++-+++
imageC1C2C2C2C2C2C2C2C4S3S3D6D6C4○D4C4×S3C4○D12S32D42S3Q83S3C2×S32D6.6D6C4×S32D6.3D6
kernelC62.6C23Dic32C6.D12Dic3⋊Dic3Dic3×C12C3×Dic3⋊C4C6.11D12C2×C6.D6C6.D6C4×Dic3Dic3⋊C4C2×Dic3C2×C12C3×C6Dic3C6C2×C4C6C6C22C2C2C2
# reps11111111811424881111222

Matrix representation of C62.6C23 in GL6(𝔽13)

100000
010000
0012000
0001200
0000121
0000120
,
1120000
100000
001000
000100
0000120
0000012
,
080000
800000
005300
005800
000080
000008
,
100000
010000
005000
000500
0000121
000001
,
500000
050000
0011100
0001200
000080
000008

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,5,5,0,0,0,0,3,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,1,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,11,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8] >;

C62.6C23 in GAP, Magma, Sage, TeX

C_6^2._6C_2^3
% in TeX

G:=Group("C6^2.6C2^3");
// GroupNames label

G:=SmallGroup(288,484);
// by ID

G=gap.SmallGroup(288,484);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,254,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=1,c^2=e^2=b^3,d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^3*c,d*e=e*d>;
// generators/relations

׿
×
𝔽